Chapter 14:

Vesicular Traffic, Secretion, and Endocytosis

陳炳宏 生物科技學系 第一教學大樓1020/1023室 校內分機2676 bhchen@kmu.edu.tw http://allergy.kmu.edu.tw

學習目標

- Techniques for studying the secretory pathway
- Molecular mechanisms of vesicular traffic (泡囊傳輸)
- Vesicle trafficking in various stages of the secretory pathway
- Receptor-mediated endocytosis and the sorting of internalized proteins

Overview of vesicular trafficking and protein sorting

- Biosynthetic secretory pathways (1), (2), (4), (6), (7), (8)
- Endocytic pathways (9), (10)
- Retrieval (Recycling) pathways (3), (5), (11)

3

Processing of N-linked oligosaccharides in Golgi

14.1 Techniques for Studying the Secretory Pathway

cis Golgi-specific endoglycosidase D

 Does not cleave <u>newly made</u> N-linked oligosaccharides (Man₈GlcNAc₂) present in ER

- Can cleave <u>processed</u> N-linked oligosaccharides (Man₅GlcNAc₂) present in cis-Golgi
 - Cleaved Man₅GlcNAc₂ will have lower M.W. →
 so, run faster on SDS-PAGE (Fig. 14-3)

Figure 14-3a Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

Analysis of protein transport (from ER \rightarrow cis-Golgi) by endoglycosidase D digestion

Transport of GFP-tagged VSV-G protein in transfected cells

Yeast <u>sec</u> mutants for the identification of¹² stages in secretory pathway Fig 14-4

transport of proteins stop at different stag various secretion-defective mutants

Cell-free transport assays allow dissection of individual steps in vesicular transport

Retrograde vesicular transport from wild type to mutant Golgi

Golgi isolated from uninfected wild-type cells

Why?

G protein in Golgi from infected mutant cells

14.2 Molecular Mechanisms of Vesicular Traffic

Fig 14-6 Overview of vesicle budding (from 'parent' or donor organelle)

(a) Coated vesicle budding

"Cargo proteins" could be either soluble or membrane-bound

- 1. Formation of soluble protein complexes (a polymerization Rx)
 - Soluble cargo protein
 - Membrane cargo proteins
 - GTP-binding proteins (initiator of the formation)
 - v-SNARE protein
 - Membrane cargo receptor protein
 - Coat proteins
- 2. Release (budding)

Overview of vesicle fusion (to 'daughter' or recipient organelle)

17

Coated vesicles (3 types)

1. COPII

- Anterograde transport
 - Rough ER \rightarrow Golgi transport
- 2. **COPI**
 - Retrograde transport
 - between Golgi cisternae, or
 - from *cis*-Golgi \rightarrow rough ER
- 3. Clathrin
 - from plasma membrane → early/late endosomes (e.g. LDL receptor)
 - from *trans*-Golgi → late endosomes (e.g. mannose-6-phosphate receptor; M6PR)
 - − from *trans*-Golgi → plasma membrane

Coated vesicles involved in protein trafficking

TABLE 14-1 Coated Vesicles Involved in Protein Trafficking

VESICLE TYPE	TRANSPORT STEP MEDIATED	COAT PROTEINS	ASSOCIATED GTPase
COPII	ER to <i>cis</i> -Golgi	Sec23/Sec24 and Sec13/Sec31 complexes, Sec16	Sar1
СОРІ	<i>cis-</i> Golgi to ER Later to earlier Golgi cisternae	Coatomers containing seven different COP subunits	ARF
Clathrin and adapter proteins*	<i>trans</i> -Golgi to endosome	Clathrin + AP1 complexes	ARF
	trans-Golgi to endosome	Clathrin + GGA	ARF
	Plasma membrane to endosome	Clathrin + AP2 complexes	ARF
	Golgi to lysosome, melanosome, or platelet vesicles	AP3 complexes	ARF

*Each type of AP complex consists of four different subunits. It is not known whether the coat of AP3 vesicles contains clathrin.

The endocytic pathway

Clathrin and adapter proteins*		trans-Golgi to endosome (e.g M6PR for lysosoma	Clathrin + AP1 complexes Il <i>luminal</i> enzymes)	ARF
	(2)	trans-Golgi to endosome	Clathrin + GGA	ARF
	(3)	Plasma membrane to endosome (e.g M6PR for <u>secreted</u>	Clathrin + AP2 complexes lysosomal enzymes, LDL receptor)	ARF
	(4)	Golgi to lysosome, melanosome, or platelet vesicles	AP3 complexes	ARF

TABLE 14-2 Known Sorting Signals That Direct Proteins to Specific Transport Vesicles

SIGNAL SEQUENCE*	PROTEINS WITH SIGNAL	SIGNAL RECEPTOR	SIGNAL-BEARING PROTEIN
LUMENAL SORTING SIGNALS			
Lys-Asp-Glu-Leu (KDEL)	ER-resident soluble proteins	KDEL receptor in <i>cis-</i> Golgi membrane	i COPI (Retrograde, <i>cis</i> -Golgi to ER)
Mannose 6-phosphate (M6P)	Soluble lysosomal enzymes after processing in <i>cis</i> -Golgi Secreted lysosomal enzymes	M6P receptor in <i>trans</i> -Gol membrane M6P receptor in plasma m	gi Clathrin/AP1 (<i>trans</i> -Golgi to late endosomes, then to lysosome) membrane Clathrin/AP2
CYTOPLASMIC SORTING SIGN	ALS \rightarrow For sorting to <u>membra</u>	ne	(plasma membrane to endosomes)
Lys-Lys-X-X (KKXX)	ER-resident membrane proteins	COPI α and β subunits	COPI (Retrograde, <i>cis</i> -Golgi to ER)
Di-acidic (e.g., Asp-X-Glu)	Cargo membrane proteins in ER	COPII Sec24 subunit	COPII (Anterograde, FR to <i>cis</i> -Golgi)
Asn-Pro-X-Tyr (NPXY)	LDL receptor in plasma membrane	AP2 complex	Clathrin/AP2 (plasma membrane to endosomes)
Туг-Х-Х- Ф (ҮХХФ)	Membrane proteins in <i>trans</i> -Golgi	AP1 (μ1 subunit)	Clathrin/AP1 (<i>trans</i> -Golgi to lysosomal membrane)
	Plasma membrane proteins	AP2 (μ2 subunit)	Clathrin/AP2 (plasma membrane to endosomes)
Leu-Leu (LL)	Plasma membrane proteins	AP2 complexes	Clathrin/AP2 (plasma membrane to endosomes)

*X = any amino acid; Φ = hydrophobic amino acid. Single-letter amino acid abbreviations are in parentheses.

VECICIES THAT INCODDODATE

Coated vesicles - properties

- All three contain <u>GTP-binding proteins</u> (GTPases)
 - ARF (in COPI and Clathrin); Sar1 (in COPII)
 - Members of GTPase superfamily
 - 'switch' proteins (active vs. inactive)
 - Active: GTP-bound (via guanine-exchange factor to switch GTP onto inactive state → conformational change
 - Inactive: GDP-bound
 - Regulatory function
 - Control coat assembly process
 - Via GTP-binding (active) and hydrolysis (inactive)

In vitro budding reaction

- Purified COPII coat proteins + isolated ER (or artificial phospholipd vesicles)
- 2. Vesicle buds can be visualized

Vesicle bud (formed by the <u>coat proteins</u>)

Fig 14-7

Action of Sar1 in the coating/uncoating of 24Fig 14-8COPII vesicle

COPII coat assembly

Sar1: GTP-binding protein; GTP/GDP switch Sec12: guanine-exchange factor (GEF)

Uncoated vesicle

GTP hydrolysis is crucial during the disassembly process

Addition of non-hydrolyzable analog of GTP will prevent the coat disassembly →Accumulation of coated vesicles →Fails to uncoat/disassemble

Incubation of

- 1. Isolated Golgi
- 2. COPI protein extracts
- 3. Energy
- 4. Non-hydrolyzable analog of GTP

How do uncoated vesicles interact with target membrane?

- <u>**Rab protein**</u> helps in the docking of uncoated vesicles on target membrane
 - Member of the GTPase family
 - Rab-GDP (inactive) \rightarrow Rab-GTP (active)
 - GTP exchange is catalyzed by GEF (guanine-<u>e</u>xchange <u>f</u>actor)
 - Rab-GTP will undergo a conformational change (Fig 14-10)
 - Docks Rab-GTP onto target membrane
 - Process requires the interaction with <u>Rab effector</u> on target membrane
 - Rab effector = receptor for Rab-GTP

Docking/Fusion of vesicle with target membrane₇

Fig 14-10

- . Interaction between v- and t-SNAREs
- 2. Formation of non-covalent coiled-coil
- 3. Vesicle and target are pulled close together
- 4. Fusion of vesicle with target membrane occurs (next slide)

Fig 14-10

- 4. Fusion of vesicle with target membrane occurs
- 5. Formation of cytosolic dimeric proteins
 NSF & α-SNAP
- 6. Binding of NSF/α-SNAP w/ SNARE complex
- 7. ATP hydrolysis (by NSF)
- 8. Disassembly of SNARE complexes
- 9. Release of v-SNARE and t-SNARE

VAMP retrogradely transported back to ER via COPI pathway

The Nobel Prize in Physiology or Medicine 2013

Photo: A. Mahmoud James E. Rothman

Photo: A. Mahmoud Randy W. Schekman

Photo: A. Mahmoud Thomas C. Südhof

The Nobel Prize in Physiology or Medicine 2013 was awarded jointly to James E. Rothman, Randy W. Schekman and Thomas C. Südhof *"for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells"*.

Photos: Copyright © The Nobel Foundation

The Nobel Prize in Physiology or Medicine 2013

Summary

The 2013 Nobel Prize honours three scientists who have solved the mystery of how the cell organizes its transport system. Each cell is a factory that produces and exports molecules. For instance, insulin is manufactured and released into the blood and signaling molecules called neurotransmitters are sent from one nerve cell to another. These molecules are transported around the cell in small packages called vesicles. The three Nobel Laureates have discovered the molecular principles that govern how this cargo is delivered to the right place at the right time in the cell.

Randy Schekman discovered a set of genes that were required for vesicle traffic. James Rothman unravelled protein machinery that allows vesicles to fuse with their targets to permit transfer of cargo. Thomas Südhof revealed how signals instruct vesicles to release their cargo with precision.

Through their discoveries, Rothman, Schekman and Südhof have revealed the exquisitely precise control system for the transport and delivery of cellular cargo. Disturbances in this system have deleterious effects and contribute to conditions such as neurological diseases, diabetes, and immunological

Schekman's major achievements:

- 1. Isolation of yeast *sec* mutants (Ch 14)
- 2. Isolation of the Sec61 translocation complex (Ch 13)
- 3. Isolation of the COPII coat complex (Ch 14)

Randy W. Schekman

Born: 30 December 1948, St. Paul, MN, USA 31

Affiliation at the time of the award: University of California, Berkeley, CA, USA, Howard Hughes Medical Institute

Prize motivation: "for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells"

Field: cell physiology, genetics

James E. Rothman

Born: 3 November 1950, Haverhill, MA, USA

Affiliation at the time of the award: Yale University, New Haven, CT, USA

Prize motivation: "for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells"

Field: biochemistry, cell physiology

14.3 Early Stages of the Secretory Pathway

Early stages of the secretory pathways

- <u>Anterograde transport ("move forward")</u>
 - from ER to cis-Golgi
 - COPII vesicles
- <u>Retrograde transport ("go backward")</u>
 - from cis-Golgi to ER
 - in between Golgi (cis-, medial-, trans-)
 - COPI vesicles

Formation of COPII vesicle (ER to *cis*-Golgi)

- On rough ER membrane (Fig 14-8)
- Initiated by Sec12 (an ER-bound GEF)
 - Bound by Sar1-GDP (soluble)
 - Catalyzes GDP \rightarrow GTP exchange on
 - Sar1-GTP \rightarrow conformational change
 - Anchors onto membrane
- Additions of
 - Sec23/Sec24, Sec13/Sec31
 - Sec16 (Fibrous ER membrane protein)
 - Interacts with both Sec23/24 and Sec13/31 complexes
 - Other ER integral proteins (cargo proteins)
 - With di-acidic sorting signal Asp-X-Glu (DXE)
 - Interacts with the Sec24 protein (Fig 14-12)

Retrograde transport by <u>COPI</u> vesicles (back to ER lumen or membrane)

- Transport of <u>ER-resident proteins</u> back to ER
 - e.g. Chaperone BiP, protein disulfide isomerase (PDI)
- Sorting signals
 - for ER *luminal* proteins
 - Lys-Asp-Glu-Leu (KDEL); located at C-terminus of the protein
 - e.g. BiP, PDI
 - For ER *membrane* proteins
 - Lys-Lys-X-X (KKXX); located on C-terminus of the protein
 - e.g. translocon Sec61, signal peptidase

Signal Sequence*	Proteins with Signal	Signal Receptor	Vesicles That Incorporate Signal-bearing Protein
Lys-Asp-Glu-Leu (KDEL)	ER-resident luminal proteins	KDEL receptor in <i>cis</i> -Golgi membrane	COPI
Lys-Lys-X-X (KKXX)	ER-resident membrane proteins (cytosolic domain)	COPI α and β subunits	COPI

Loading/Unloading of COPI cargo is pH-dependent ³⁸

• KDEL receptor

- Transmembrane protein
- Present in
 - vesicles shuttling in between ER and cis-Golgi
 - COPI & COPII
 - cis-Golgi reticulum
- Recognizes and binds to
 KDEL sorting signal
- To transport misfolded ER
 luminal proteins back to
 ER
- Binding with its cargo protein is <u>pH-dependent</u>

Fig 14-13

Processing of N-linked oligosaccharides in Golgi

Vesicles transport through the Golgi (via *cisternal maturation/progression*)

Protein secretion

- Detailed mechanism remains unknown
- Current model:
 - (forward) non-vesicular mechanism
 - (backward) anterograde transport by COPI
- Various oligosaccacharides are added at different Golgi compartments

Cisternal maturation

14.4 Later Stages of the Secretory Pathway

Later stages of the secretory pathways

 Involves various vesicles budding from the *trans*-Golgi network (TGN)

Clathrin-mediated vesicle budding from the trans-Golgi network

Each clathrin coat is composed of 35 triskelions

Fig 14-18

The birth of clathrin

Cell biology: Clathrin's Achilles' ankle Nature 432, 568-569 (2004)

How does clathrin vesicle pinch off host membrane?

- Requires polymerization of 1. dynamin monomers
- 2. Polymerized dynamin
 - \rightarrow Drives GTP hydrolysis
- 3. Contraction of dynamin
- Pinching off of vesicles 4.

(Note) Pinching off process in **COPI** and **COPII** vesicles DO NOT require dynamin!!!

GTP hydrolysis is required for the dynamin-mediated pinching-off

- 1. Actively endocytose nerve cells
- 2. Lysed and incubated with <u>non-hydrolyzable GTP</u>
- 3. Treated with gold-tagged antidynamin Ab
- 4. [Result] formation of clathrin/AP complexes, but <u>no</u> <u>pinching-off from donor</u> <u>membrane</u>

Fig 14-20

Vesicles can not pinch off due to <u>the lack of GTPs</u>

A special sorting signal for targeting proteins to⁴⁹

lysosomes

(1) For soluble (cytosolic) lysosomal proteins

Protein-M6P

- From *trans*-Golgi to late endosome, then to lysosome
- Requires formation of mannose 6-phosphate (M6P) on cargo protein (occurs in the <u>cis-Golgi</u>)
 - The same first <u>core Man8(GlcNAc)2</u> is formed as others in the rough ER (Fig 14-14)
 - The 2nd step involves 2 enzymes (Fig 14-21)
 - GlcNAc phosphotransferase (addition of GlcNAc-P onto the core)
 - Phosphodiesterase (removal of GlcNAc)
- (2) For membrane lysosomal proteins
 - Requires the Tyr-X- χ - ϕ signal sequence
- Both via the clathrin/AP1 vesicle route

Formation of mannose 6-phosphate

(1) Addition of GlcNAc-P

Fig 14-21

(2) Removal of GlcNAc

Regulated and unregulated secretory pathways

- Regulatory secretory pathway
 - Exocytosis
 - e.g. insulin secreted by pancreatic β cells
- Unregulated secretory pathway
 - Constitutive secretory pathway
- In general, both pathways often requires <u>protein aggregation</u>' in the *trans*-Golgi network before forming the transport vesicle

Some proteins undergo proteolytic cleavage after leaving the *trans*-Golgi

- Required by some proteins for the conversion into mature protein
- Occurs after they leave trans-Golgi
- Lysosomal proproteins
 - Also called 'proenzymes' (inactive)
 - Sorted to lysosome via the same M6P receptor-mediated pathway (Fig 14-22)
 - Undergo proteolytic cleavage in <u>late endosome/lysosome</u> to generate active enzymes
- Other examples
 - Membrane protein: hemagglutinin (HA)
 - Secreted proteins: insulin, glucagon, albumin,...etc.

Proteolytic processing of proprotein

(a) Constitutive secreted proteins

<u>Arg-Arg</u> or <u>Lys-Arg</u> are two common proenzyme recognition sites on proproteins

Fig 14-24a

(b) Regulated secreted proteins

Sorting of membrane proteins in polarized cells (on apical side)

56

Fig 14-25

14.5 Receptor-mediated endocytosis

Endocytosis vs Phagocytosis

- Phagocytosis
 - "<u>Cellular eating</u>" of large particles (microorganisms, senescent and apoptotic cells)
 - Non-selective
 - Actin-mediated formation of <u>plasma membrane</u> <u>extensions</u> ('pseudopod')
 - Typical for only few cell types (e.g. macrophages)

Endocytosis vs Phagocytosis

- Endoctyosis
 - Uptake fluids (pinocytosis) and macromolecules
 - Requires the formation of endocytic vesicles
 - High rate and highly specific
 - e.g. receptor-mediated endocytosis
 - Essentially occurs in almost <u>ALL</u> eukaryotic cell types

Clathrin-mediated internalization of LDL 60

pH-dependent binding of LDL by LDL receptor (pH=7)

• $pH = 7 \rightarrow \underline{tight \ binding}$ between LDL and LDL receptor

61

pH-dependent binding of LDL by LDL receptor (pH<6)

The transferrin cycle

14.6 Directing Membrane Proteins and Cytosolic Materials to the Lysosome

Delivery of membrane proteins to ⁶⁵ lysosome for degradation

© 2008 W. H. Freeman and Company

Membrane proteins to be degraded are formed as **internal vesicles** in late endosome

Delivery of cytoplasmic components for degradation (Autophagy) ER fragments

Figure 14-35 *Molecular Cell Biology, Sixth Edition* © 2008 W.H. Freeman and Company

Budding of retroviruses is similar to formation of multivesicular endosomes

Fig 14-33, 34

- 1. Requires ubiquitinated proteins to direct loading of cargo proteins.
 - Gag (HIV) = Hrs (endo.)
- 2. Cargo proteins are also ubiquitinated
- 3. Complete formation of vesicle requires assistance of the ESCRT complex
- 4. An ATP-driven process

67

- Overview of protein secretion process.
- Golgi structure 3D
- Golgi structure SEM animation

Golgi – 3D

Goigi - SEM

End of Chapter 14

版權聲明:

- 本講義所使用之圖片皆由出版商提供或是由網際網路之公開網頁直接下載使用,僅供授課者 上課解說與學生課後複習之教育用途,禁止任何其他商業行為的複製與傳佈。
- 2. 由網路下載的圖片已盡可能提供原始連結網頁(請直接點選該圖檔)。
- 3. 本講義之文字或圖片內容若有侵權之虞,歡迎告知授課者,將立即修正相關內容。